
NPS52-85-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

QA
76.9
S88
D45
1985

NEW DIRECTIONS IN DATABASE-SYSTEMS RESEARCH
AND DEVELOPMENT

Steven A. Demurjian and David K. Hriao

February 1985

Approved for public release, distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

SSs^s^
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker
Superintendent

D. A. Schrady
Provost

The work reported herein was supported by Contract from DoD STARS Program and
from the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

DAVID K. HSIAO
Professor of Computer Science

Reviewed by: Released by:

ICE J. "MACLEM
Acting Chairman
Department of Computer Science

t^krHo,
KNEALE T. MARSHALL
Dean of Information and
Pol icy Science

•¥

unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whin Data Sntarmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS52-85-001

2. GOVT ACCESSION NO. 1. RECIPIENT'S CATALOG NUMItH

4. TITLE ("and Submit)

New Directions In Database-Systems Research
and Development

5. TYPE OF REPORT A PERIOO COVERED

« PERFORMING ORO. REPORT NUMBER

7. AUTHORC»;

Steven A. Demurjian and David K. Hsiao

S. CONTRACT ON GRANT NUMIt»(.)

9. PERFORMING ORGANIZATION NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93943

10. PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

61153N; RP.014-08-01
N0001485WR24046

11. CONTROLLING OFFICE NAME ANO AOORESS

Chief of Naval Research
Arlington, Virginia 22217

12. REPORT DATE

February 1985
11. NUMBER OF PAGES

29
14. MONITORING AGENCY NAME a AODR ESSdt difltsrmnl from Controlling Olllcm) IS. SECURITY CLASS, (ol thla rmport)

ISa. OECL ASSI FIC ATION. DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ot thlm Rmport)

17. DISTRIBUTION STATEMENT (ot thm abmtract mntmtmd In Block 20. It dlllmrmnt tram Rmoon)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlmim on rararaa ml dm II nmcmmmmry and Idmntlty by block nuntbmr)

20. ABSTRACT (Contlnum on rmvmrmm mldo II nacaaaaiy and Idmntlty by block numbmr)

In this paper, three new directions in database-systems research and
jevelopment are indicated. One new direction is the emergence of the multi-
lingual database systems where a single database system can execute many transac-
tions written respectively in different data languages and support many databases
structured correspondingly in various data models. Thus, a multi-lingual data-
base system allows the old transactions and existing databases to be migrated
to the new system, the user to explore the strong features of the various data
languages and data models in the same system, the hardware upgrade to be focused

DD F0RM
W f JAN 73 1473 EDITION OF 1 NOV S3 |$ OBSOLETE

S/N 0102-LF-0t4-6601
SECURITY CLASSIFICATION OF THIS RAGE fWW. Dmtm tmtmmd)

unclassified
SECURITY CLASSIFICATION OF THIS PACE (Whtt D«l« Enfrmd)

on a single system instead of a heterogeneous collection of database systems,
and the database application to cover wider types of transactions and interaction
in the same environment.

One other new direction is the emphasis of the multi-backend database systems
where the database system is configured with a number of microprocessor-based
processing units and their disk subsystems. These processing units and disk
subsystems are called database backends. The unique characteristics of the
backends are that the number of the backends is variable, the system software
in all of the backends is identical, and the multiplicity of the backends is
proportional to the performance and capacity of the system. Thus, for the first
time, a multi-backend database system enables the user to relate the amount
of hardware used (i.e., the number of the backends) to the degree of performance
gain and capacity growth of the system.

The third new direction is the possibility of the multi-host database systems
where a single database system can communicate with a variable number and hetero-
geneous collection of mainframes in several different data languages and allow
the mainframes to share the common database store and access.

This paper attempts to articulate the background, benefits, requirements
and architectures of these new types of database system, namely, the multi-lingua
the multi-backend, and the multi-host database systems.

S/N 0102- IF- 014- 6601
unclassified

SECURITY CLASSIFICATION OF THIS PAGE(l*7i»n Datm Enttrmd)

NEW DIRECTIONS

IN

DATABASE-SYSTEMS RESEARCH AND DEVELOPMENT *

Steven A. Demurjian and David K. Hsiao

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

U. S. A.

ABSTRACT

In this paper, three new directions in database-systems research and development

are indicated. One new direction is the emergence of the multi-lingual database systems

where a single database system can execute many transactions written respectively in

different data languages and support many databases structured correspondingly in

various data models. Thus, a multi-lingual database system allows the old transactions

and existing databases to be migrated to the new system, the user to explore the strong

features of the various data languages and data models in the same system, the

hardware upgrade to be focused on a single system instead of a heterogeneous collection

of database systems, and the database application to cover wider types of transactions

and interactions in the same environment.

One other new direction is the emphasis of the multi-backend database systems

where the database system is configured with a number of microprocessor-based

processing units and their disk subsystems. These processing units and disk subsystems

are called database backends. The unique characteristics of the backends are that the

number of the backends is variable, the system software in all of the backends is

identical, and the multiplicity of the backends is proportional to the performance and

capacity of the system. Thus, for the first time, a multi-backend database system

enables the user to relate the amount of hardware used (i.e., the number of the

backends) to the degree of performance gain and capacity growth of the system.

* The work reported herein is supported by grants from the Department of Defense STARS Program and from the Office of
Naval Research and conducted at the Laboratory for Database Systems Research, Naval Postgraduate School, Monterey, CA 93943.

The third new direction is the possibility of the multi-host database systems where a

single database system can communicate with a variable number and heterogeneous

collection of mainframes in several different data languages and allow the mainframes to

share the common database store and access.

This paper attempts to articulate the background, benefits, requirements and

architectures of these new types of database systems, namely, the multi-lingual, the

multi-backend, and the multi-host database systems.

TABLE OF CONTENTS

ABSTRACT 1
1. INTRODUCTION 3
2. THE MULTI-LINGUAL DATABASE SYSTEM (MLDS) 4

2.1 Issues and Merits of a Multi-Lingual Database System 6

2.1.1 Practical Merits 6

2.1.2 New Functionalities 7
2.1.3 Theoretical Issues 7

2.2 The Organization of a MLDS 8

3. THE MULTI-BACKEND DATABASE SYSTEM (MBDS) .'. 9
3.1 Design Requirements 12
3.2 Design Issues 13

4. RESEARCH AND DEVELOPMENT IN MULTI-LINGUAL AND MULTI-
BACKEND DATABASE SYSTEMS 15

4.1 On the Multi-Lingual Database System 15
4.1.1 Our Effort 15

4.1.2 Other Efforts 16
4.2 On the Multi-Backend Database System 17

4.2.1 Our Research 17
4.2.2 Other Development 19

5. CONCLUDING REMARKS - YET ANOTHER NEW DIRECTION 20
5.1 The Third New Direction 20

5.1 MLDS + MBDS = MHDS 21
REFERENCES . 22

- 2 -

1. INTRODUCTION

In this paper, three new directions in database-systems research and development

are indicated. One new direction is the emergence of the multi-lingual database systems

where a single database system can execute many transactions written respectively in

different data languages and support many databases structured correspondingly in

various data models. For example, a multi-lingual database system can run DL/I

transactions on IMS databases, CODASYL-DML transactions on network databases and

SQL transactions on relational databases, where the system appears to the user like a

heterogeneous collection of database systems. Thus, a multi-lingual database system

allows the old transactions and existing databases to be migrated to the new

environment, the experienced user to continue to utilize certain favorite features of

existing data languages and data models, the new user to explore the strong features of

the various data languages and data models, the hardware upgrade to be focused on a

single system instead of a heterogeneous collection of database systems, and the

database application to cover wider types of transactions and different modes of

interactions.

One other new direction is the emphasis of the multi-backend database systems

where the database system is configured with a number of microprocessor-based

processing units and their disk subsystems. These processing-units and disk subsystems

are known as database backends. The unique characteristics of the system are that the

number of the backends is variable, the system software in all of the backends is

identical, and the multiplicity of the backends is proportional to the performance and

capacity of the system. For example, by doubling the number of backends of the

original multi-backend database system, the response time of the transactions in the

new system for the database can be reduced to nearly one half of the response time of

the same transactions for the same database running in the original system. Similarly,

as the database grows in the original system, the response set for a transaction may also

grow. By doubling the number of backends of the original multi-backend database

system, the response time of the transaction in the new system can be held nearly

constant, despite an increase of twice as much responses for the same transaction.

Thus, for the first time, a multi-backend database system enables the user to relate the

amount of hardware used (i.e., the multiplicity of the backends) to the degree of

response-time reductions and performance gains of the system.

- 3

The third new direction is the possibility of the multi-host database systems, where

a single database system can interface with a large, variable number of heterogeneous

computers which do not have database-systems software, but, nevertheless, require

diverse and cost-effective database services and support.

The remainder of this paper is organized as follows. In Section 2 we describe the

multi-lingual database system, focusing on its practical merits, new functionalities,

theoretical issues, and basic structure. In Section 3, we examine the multi-backend

database system, focusing on its background, motivation, requirements, and issues. In

Section 4, we report on research and development work being conducted on multi-

lingual, multi-backend and similar database system. Finally, in Section 5 we conclude

this paper by introducing the new direction of the multi-host database systems and by

speculating on what will be the database systems of the future.

2. THE MULTI-LINGUAL DATABASE SYSTEM (MLDS)

Data models, data languages and database systems have evolved over the past 20

years. For instance, in the mid-sixties, IBM introduced the Information Management

System (IMS), which supports the hierarchical data model and the hierarchical-model-

based data language, Data Language I (DL/I). In the early seventies, Sperry Univac

introduced the DMS-1100 database system, offering the network data model and the

network-model based data language, CODASYL Data Manipulation Language (DML).

The evolution continued with IBM's introduction of the SQL/Data System in 1981

which supports the relational model and the relational-model-based data language,

Structured English Query Language (SQL). As in the evolution of software-laden

database systems, the hardware-assisted database systems followed the same pattern.

Thus, the Britton-Lee Corporation introduced the IDM/500 in 1982 and the Teradata

Corporation began marketing the DBC/1012 in 1984. Both systems support the

relational data model and relational-model-based data languages similar to SQL.

Throughout the past twenty years, the conventional approach to the design and

implementation of a database system involved two key decisions. First, a specific data

model for the database system is chosen. Second, a corresponding model-based data

language is then specified. The result of this traditional approach to the database

system development is a homogeneous database system where the user sees and uses the

database system with a specific data model and its model-based data language. The

accepted practice for the database-systems design and implementation mandates that a

database system must be restricted to a single data model and a specific model-based

data language.

Why should a database system be restricted to a single data model and a specific

model-based data language? Let us review the evolution of operating systems before

answering this question. The early operating systems, like the present database

systems, individually supported a specific set of data structures and a single

programming language which defines and manipulates the structured data. For example,

the Fortran Monitor System of the late fifties supported an operating system

environment for a single programming language (i.e., Fortran) and its corresponding

data structures (e.g., Fortran arrays and variables). As operating systems evolved

through the sixties and seventies and into the eighties, the same operating environment

supported a variety of data structures and their programming languages. For example,

the Unix operating system supports traditional programming languages, such as C,

Pascal, and Fortran, list-processing programming languages, such as Lisp, and logic

programming languages, such as Prolog. Each of these programming languages has its

own set of data structures. All programs written in the aforementioned languages and

data structures can be run in the same operating system which is also responsible for

managing all of the physical resources shared by the running programs and their data

structures.

Given this characterization of the operating-systems evolution, we can draw an

interesting analogy between operating systems and database systems. The concepts of

the modern operating systems, programming languages, data structures, and shared

resources are analogous to the concepts of modern database systems, data languages,

data models and shared databases. Since a modern operating system executes and

supports the user's programs in different programming languages and data structures, a

modern database system should also execute and support the user's transactions in

different data languages and data models. Since a modern operating system provides

access to and management of a common set of resources for the running programs, a

modern database system should also provide access to and management of a large

collection of shared databases for the running transactions. Finally, since a modern

operating system provides many modes of access, such as interactive programming and

batch processing, a modern database system should also provide many modes of access,

5 -

such as ad-hoc queries and transaction processing. With this analogy, we respond to the

question in the previous paragraph that a modern database system should be able to

support multiple data models and their different data languages and provide various

modes of access to the databases. Such a modern database system is termed the multi-

lingual database system (MLDS).

2.1. Issues and Merits of a Multi-Lingual Database System

The issues and merits of a multi-lingual database system fall into three categories.

First, by studying the practical merits of a MLDS, we are able to demonstrate the

concrete and useful features of such a system. Second, by identifying the new

functionalities inherent in a MLDS, we are able to provide the incentives for the user to

move from a conventional database system to the MLDS. Third, by verifying the

theoretical issues required to support multiple data models and data languages in a

MLDS, we may gain a better understanding into the structures of and relationships

among different data models and data languages.

2.1.1. Practical Merits

One practical advantage of a multi-lingual database system involves the reusability

of database transactions developed on existing database systems. Since MLDS provides

an environment for running database transactions written in different data languages,

the transactions written in a specific data language on another database system can also

be executed in MLDS. There is no need to translate a transaction written in one data

language to another data language in order to run the transaction in the other database

system. For example, had we wanted to run a transaction (written in DL/I and running

on IMS) in SQL/DS, we would have to translate the transaction from DL/I to SQL,

since SQL/DS is a relational system and does not run DL/I transactions. However, in

a multi-lingual database system, although both SQL and DL/I are supported, there is

no need of any translation from DL/I to SQL. Nor is there a need of translation from

SQL to DL/I. A MLDS can execute transactions written in either DL/I or SQL. Thus,

a MLDS provides an environment in which "old" transactions never die and "new"

transactions can continue to be written in the same (old) data languages.

The second practical advantage of a multi-lingual database system lies in the

economy and effectiveness of hardware upgrade. As for any database system there

- 6

comes a time when a hardware upgrade is required due to technology advancement or

system demand. The upgrade of a MLDS will benefit all of the user transactions

whether the transactions are written, for instance, in SQL, DL/I, or CODASYL-DML.

In the conventional environment where there are separate database systems for separate

data languages, all of the database systems would need to be upgraded. For our

example, the conventional upgrade involves the hardware of SQL/DS, of IMS and of

DMS-1100, resulting in greater expense and effort.

2.1.2. New Functionalities

One new functionality of a multi-lingual database system is to allow the new users

to explore the strong points of different data models and to utilize desirable features of

different data languages for their applications. This is because a MLDS can be used to

support databases structured in any of the well-known data models, such as relational,

hierarchical, or network, and to execute transactions written in any of the well-known

data languages, such as SQL, DL/I, or CODASYL-DML.

The other new functionality of a MLDS is the availability of its native data model

and data language. The native data model of the MLDS is called the kernel data model

(KDM), and the native data language the kernel data language (KDL). The term

"kernel" is meant to be "central" or "core" or "essential". The difference between a

conventional data model and the kernel data model is * that all of the databases

structured in a conventional data model can be transformed into equivalent databases

structured in the kernel model. Further, all of the conventional data languages can be

translated into the kernel data language. It is important to note that the KDM (KDL)

as a data model (language) is at a high level like other data models (languages), such as

the relational data model (SQL data language), the hierarchical data model (DL/I data

language) and the network data model (CODASYL-DML data language). Thus, there

is no reason why the users should not also explore the strong points of KDM and the

desirable features of KDL for their applications.

2.1.3. Theoretical Issues

In searching for a kernel data model and kernel data language with a high-level

structure, which will support different data models and data languages, we are

examining the transformations of various data models into the kernel data model and

the translations of various data languages to the kernel data language. The mapping

process from a given data model to KDM is called data-model transformation. The

mapping process from a given data language to KDL is called data-language translation.

To design a multi-lingual database system, the data-model transformations and data-

language translations must be specified. By specifying the various data-model

transformations, e. g., from the relational model to the KDM, from the hierarchical

model to KDM, and from the network model to the KDM, we may also examine the

transformation process to determine the commonalities and differences of the different

transformations. Similarly, by providing various data-language translations, e. g., from

SQL to KDL, from DL/I to KDL, and from CODASYL-DML to KDL, we may also

study the translation process to identify the common and different translation

techniques. Finally, once all of the data-model transformations and data-language

translations have been specified, we can examine the complexity of the transformation

and translation processes.

2.2. The Organization of a MLDS

The system structure of a multi-lingual database system is shown in Figure 1.

Users issue transactions through the language interface layer (LIL) using a chosen data

model (UDM) and written in a corresponding model-based data language (UDL). LIL

then routes the user transactions to the kernel mapping system (KMS). KMS has two

tasks. First, if the user specifies that a new database is to be created, KMS transforms

the UDM database definition to a kernel-data-model-based (KDM) database definition.

The KDM data definition is then sent to the kernel controller (KC). KC sends the

KDM database definition to the kernel database system (KDS). Upon completion, KDS

notifies KC, which in turn, notifies the user that the database definition has been

processed and that the loading of the database may commence.

The second task of KMS is to handle UDL transactions. In this situation, the KMS

translates the UDL transaction to a kernel-data-language (KDL) transaction. KMS

then sends the KDL transaction to KC, which in turn, sends the KDL transaction to

KDS for execution. Upon completion, KDS sends the results in KDM form back to KC.

KC forwards these results to the kernel formatting system (KFS) for transforming them

from the KDM form to the UDM form. After the data is transformed, KFS returns the

results, i.e., the response set, to the user via LIL.

8

UDM : User Data Model
UDL : User Data Language
LIL : Language Interface Layer
KMS : Kernel Mapping System
KC : Kernel Controller
KFS : Kernel Formatting System
KDM : Kernel Data Model
KDL : Kernel Data Language
KDS : Kernel Database System

Figure 1. The Multi-Lingual Database System (MLDS)

There is one final note of importance on the general system structure. Four of the

five components of the multi-lingual database system, namely, LIL, KMS, KC, and

KFS, are referred to as a language interface, and are duplicated for each chosen data

language. For example, there will be a set of LIL, KMS, KC, and KFS for a

relational/SQL language interface, a separate set of these four components for a

hierarchical/DL/I language interface, and a third set of components for the

network/CODASYL-DML language interface. KDS, on the other hand, is a single and

major component that is accessed and shared by all of the various language interfaces.

3. THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

In Section 2, the progression of database-systems research and development in

terms of their support of single or multiple data models and data languages has been

followed. The progression of database-systems research and development can also be

followed in view of their architectural configurations. A taxonomy of the architectural

configurations of database systems can be found in the preface of [Hsia83]. Similar and

9

simplified taxonomies have appeared in [Cham78, Hsia80]. The conventional approach to

database management has the database-system software running as an applications

program on a mainframe computer system. In this case, the database system must

share the use and control of the resources with all of the other applications of the

mainframe system. As the workload of a conventional database system increases, the

performance of the database system degrades.

The solution to the problems of performance degradation and resources sharing and

control is to offload the database-system software from the mainframe computer to a

separate, dedicated computer with its own disk system. This approach, called the

software single-backend approach, was adopted by Bell Laboratories in their work on

XDMS [Cana74]. As quoted below, the main goals of XDMS were to:

(1) obtain a cost saving and a performance gain through
specialization of the database operations on a dedicated
backend processor,

(2) allow the use of shared databases [by different mainframe
computers, now called hosts],

(3) provided centralized [i. e., physical] protection of the
databases, and

(4) reduce the complexity when developing software for a
stand-alone and new machine.

Software single-backend systems can achieve goals 2, 3, and 4, but have had

difficulty in meeting goal 1 entirely. Although single backends may be cost-effective,

these systems suffer from performance problems; in fact, they suffer from the same

performance problems of the database systems running on the mainframes. As the use of

a software single-backend database system increases, the single backend can no longer

maintain the desired performance which had been gained by offloading the database

software from the mainframe and by utilizing the dedicated hardware. Like the

hardware upgrade of mainframe computers, the conventional approach to the hardware

upgrade of software single-backend systems is to use the next more powerful backends.

Unfortunately, such an upgrade does not yield precise, direct and proportional

performance gains with respect to cost differentials. There is, however, an

"unconventional" approach to the hardware upgrade process.

10

To overcome the performance problems of the software single-backend approach,

the use of multiple backends for the database management operations, as an

unconventional approach, is being considered. This approach, known as the software

multiple-backend approach, may overcome the performance failings of the single-software

backend approach. We will refer to a system that uses the software multiple-backend

approach as a multi-backend database system (MBDS).

MBDS attempts to provide performance gains through specialization of the

database operations on dedicated, multiple backends. Unlike XDMS, MBDS does not

restrict itself to a single backend. Instead, MBDS utilizes multiple backends connected

in a parallel fashion in order to achieve performance gains and capacity growth. These

backends have identical and replicated software and their own disk systems. In MBDS,

there is a backend controller (i. e., master) which is responsible for supervising the

execution of database transactions and for interfacing with the hosts and users. The

backends (slaves) perform the database operations with the database stored on the disk

systems of the backends. The controller and backends are connected by a

communications bus. Users access the system either by way of the hosts or through the

controller directly. Figure 2 depicts the basic architectural configuration of MBDS.

.The two goals of a multi-backend database system are of course to overcome the

performance problems of single-backend database systems. First, by increasing the

number of backends, while the size of the database and the size of the responses to the

transactions remain constant, MBDS is to produce a reciprocal decrease in the response

times of the user transactions. Second, by increasing the number of backends

proportionally to the increase of transaction responses, MBDS is to produce invariant

response times for the user transactions. The first goal allows the multiplicity of the

backends of MBDS to be directly related to the performance gains of MBDS in terms of

the response-time reduction. The second goal enables the multiplicity of the backends of

MBDS to be directly related to the capacity growth of MBDS in terms of response-time

invariance.

How can a multi-backend database system be designed and implemented to meet

the two aforementioned goals? In the following subsections the necessary and sufficient

features of a "good" MBDS are given. These are the design requirements, which

underscore the major characteristics of MBDS. The characteristics that a MBDS must

have in order to satisfy the major design requirements are also given. These are termed

- 11 -

Communications
Bus

Backend Store 1

Backend Store 2

Backend Store M

Figure 2. The Multi-Backend Database System (MBDS)

design issues.

3.1. Design Requirements

There are three requirements that underscore a multi-backend database system.

One requirement states that MBDS be expandable, in order to support the addition of

backends for performance enhancement and capacity growth. This expansion must

require no modification to the existing database software, no new programming

necessary for the expansion, no modifications to the hardware and no major disruption

of system activity when additional backends are being incorporated into the system.

The second requirement mandates that both the hardware and software are generic.

The hardware of the backends should be typical and readily available (i. e., off-the-shelf)

and can be added to the system with minimal interruption of the system activity. This

creates a system that permits a smooth and ready expansion without relying on costly,

- 12

atypical, special-purpose hardware and without noticeable system interruption. The

backend software should be designed so that a new backend can be integrated into the

system by simply replicating the database system software of another backend into the

new backend.

The third requirement suggests that, for storage, a database is evenly distributed

across the disk systems of the backends. Thus, when a transaction is being processed, a

backend works on its own portion of the database in parallel with other backends

working on their own portions of the same database. By exploiting the parallelism of

the backends and by distributing a database evenly for storage, the system should gain

in performance.

3.2. Design Issues

There are several issues which must be resolved in order to meet the design

requirements of a multi-backend database system. In particular, these design issues

involve the specification of the characteristics of the backend controller, the

communications bus, the backends, and the database.

The first issue specifies the features of the backend controller. The overall design

goal of a backend controller should focus on minimizing the work done by the controller.

(See Figure 2 again.) The controller receives a user transaction either from a host or

through a terminal and broadcasts the transaction to all of the backends for execution.

The controller also collects all of the results produced by the backends for the user

transaction and routes the results to the host or to the terminal. As such, the controller

becomes a prime candidate for the bottleneck of the system. By minimizing the work of

the controller, and by offloading all of the database management operations to the

backends, the controller may reduce its possibility of becoming the system bottleneck.

Overall, the functions of the controller are reduced to the pre-processing of the user

transactions, the post-processing of the transaction results, the sending and receiving of

data from the backends and the hosts, and the arbitration of data insertion into the

database.

The second design issue is the communications bus between the controller and the

backends. Consider two extreme choices: one where a broadcast bus is shared by the

controller and backends or another where a point-to-point high-speed bus between the

controller and each backend is utilized. While the high-speed bus may offer a higher

- 13 -

communications rate, the broadcast bus is a cost-effective solution, since data-intensive

transfers are between the backends and their disk systems and are not between the

backends and the controller (i. e., not on the broadcast bus). The choice of the

broadcast bus as a cost-efficient solution for both backend communication and backend

addition may be warranted.

The third class of issues involves the backends of the system. The backends of the

system must have identical software to allow replication of the software on a new

backend. Additionally, the backends must have complete software to perform all of the

database management functions. These functions include directory management,

concurrency control, record processing, and communications. The directory management

function is responsible for managing indices, calculating record clusters, allocating the

secondary-storage addresses for record insertion, maintaining the secondary-storage

tables of indices, cluster numbers, and addresses, processing transactions against the

directory tables, and providing record addresses for subsequent database access

operations. The concurrency control function oversees various accesses to the directory

tables and the user data and facilitates the concurrent execution of transactions. The

record processing function is used to stage the user data from the secondary storage to

the primary memory, to process the staged data, to store data onto the secondary

storage, and to return the responses to the controller. Finally, there are communication

functions in each backend to control communications among backends and between the

backend and the controller. It is necessary to minimize the communications among

backends, in order to reduce the communications traffic among them.

The fourth and final design issue is concerned with the database. In a multi-

backend database system, a database must be placed on the secondary storage in such a

way so that all of the subsequent accesses to the database will result in block-parallel-

and-record-serial operations at the individual backends. In other words, all of the

backends are accessing, in parallel, the secondary-storage blocks of the same database in

their respective disk systems, although the records in the blocks which may satisfy the

same transaction or different transactions are being accessed by the backends serially.

Thus, the issue really focuses on how to ensure an even distribution of the user database

across the disk systems of the backends. Such a distribution is referred to as data

placement, and requires an algorithm for specification and implementation. To achieve

an even distribution of data, there must be a processor in the multi-backend database

14

system that is responsible for overseeing the record-insertion process. The controller has

an overview of the entire system, and is the logical choice for arbitrating the record

insertion process, i. e., controlling the data placement.

4. RESEARCH AND DEVELOPMENT IN MULTI-LINGUAL AND

MULTI-BACKEND DATABASE SYSTEMS

In this section we review and characterize the research and development efforts

being conducted on both multi-lingual and multi-backend database systems. We

organize the section into two major subsections, and examine each of the two classes of

database systems, namely, multi-lingual and multi-backend classes of database systems.

Since we are also actively pursuing research in both of these two classes of database

systems at the Laboratory for Database Systems Research, Naval Postgraduate School,

each of these subsections describes our approach and other approaches to the design and

implementation of the corresponding class of database systems.

4.1. On the Multi-Lingual Database System

4.1.1. Our Effort

As a prerequisite for examining our experience with a MBDS, we first explore the

two goals of the mapping process, i. e., data-model transformation and data-language

translation. In data-model transformation, we must be sure that the data semantics are

preserved. When converting a database (modeled in, for example, one of the three

major models) to an kernel database, we must ensure that a complete and consistent

database has been created. In data-language translation, we must guarantee the

operational equivalence of the translated transaction. Thus, when translating a source

transaction (written in, for example, one of the three major data languages) to a target

transaction written in the kernel data language, we must ensure that the access of the

stored database by the target transaction results in the correct action on the database

as required by the source transaction. To us, the key decision in the development of a

multi-lingual database system is therefore the choice of a kernel data model and kernel

data language. In our effort, we experiment with the attribute-based data model

proposed by [Hsia70], extended by [Wong7l], and studied by [Roth74] as the kernel data

model for a MLDS. The attribute-based data language (ABDL) defined in [Bane77] is

therefore chosen as the kernel data language. The main question is whether the

- 15

attribute-based data model and data language are capable of supporting the required

data-model transformations and data-language translations. Is it easy to transform a

relational, hierarchical or network database to an attribute-based database with the

data semantics being preserved? Can SQL, DL/I and CODASYL-DML constructs be

translated easily to ABDL constructs with the guarantee of operational equivalence?

The series of papers [Bane78c, Bane80, Bane78a] have shown how the relational,

hierarchical, and network data can be transformed to attribute-based data and also

presented some preliminary work on the corresponding data-language translations.

More recently, the work of [Macy84, Roll84] provides a complete set of algorithms for

the data-language translation from SQL to ABDL, and the work of [Weis84] provides a

complete set of algorithms for the data-language translation from DL/I to ABDL.

Currently, the algorithms for translating from CODASYL-DML to ABDL are under

investigation. Software development efforts for the language interface, i. e., one set of

LIL, KMS, KFS, and KC for the relational interface and another set for the hierarchical

interface, are being pursued.

4.1.2. Other Efforts

In the data-model transformation and data-language translation areas, there are

other efforts. These efforts have emphasized different approaches to a MLDS. In one

approach, the goal is to examine the capability of an existing database system in

supporting another data model and language on the existing system. The work of

[Katz82] supports the network data model and CODASYL-DML data language on a

relational system. Furthermore, the support of the relational data model and data

language on a network system and the support of the network data model and data

language on a relational database system have been examined in [Lars83]. Each of these

examinations is essentially restricted to the mapping from one data model and data

language to another data model and data language. We define this approach as the

one-to-one mapping approach.

The other effort in data-model transformation and data-language translation

focuses on communicating with a heterogeneous collection of database systems via a

local-area network. In this effort, a global data model and global data language is

defined. By using a global data model and global data language, the user is able to

obtain uniform access to a heterogeneous collection of database systems based on

16

.

different data models and data languages [Glig84]. The CCA Multibase System

[Rose82], UCLA DBMS [Card80], and NBS XNDM [Kimb8l] are examples of database

systems each of which maps a single global data model and global data language to a

collection of data models and data languages, e.g., the one-to-many mapping approach.

• It is interesting to note that the MLDS described in Section 4.1.1 maps respectively

many different data models and data languages to the kernel data model and kernel

data language which is the many-to-one mapping approach. The one-to-many mapping

approach is the inverse of the many-to-one mapping approach and the one-to-one

mapping approach is a special case of the more general case of the many-to-one mapping

approach.

4.2. On the Multi-Backend Database System

4.2.1. Our Research

Our research on the multi-backend database system had its origins at the Ohio

State University in 1980 and has been based at the Naval Postgraduate School since

1982. The original design and analysis of MBDS can be found in [Hsia81a, Hsia81b].

The implementation and new design efforts are documented in [Kerr82, He82, Boyn83b,

Demu84]. A review of the message-passing structure of MBDS is given in [Boyn83a].

MBDS attempts to meet all of the goals and requirements outlined in Section 3. It has

been implemented on a VAX-11/780 (VMS OS) as the controller and two PDP-ll/44s

(RSX-11M OS) and their disk systems as the backends. The disk system of each

backend can support one or more disk drives. Communication between computers is

accomplished by time-divisioned-multiplex buses, known as parallel communications

links (PCLs). When the implementation of MBDS began, neither the microprocessor-

based computers nor the broadcast-based communications devices were available.

Currently, MBDS is being down-loaded to an initial configuration of five

microprocessor-based, Ethernet-connected, and Winchester-drive-supported workstations

^ (4.2 BSD Unix OS) with one of the five being used as the controller and the other four

as backends.

As indicated above, MBDS is a message-oriented system. In a message-oriented

system, each process corresponds to one system function. These processes, then,

communicate among themselves by passing messages. User transactions are also passed

- 17-

among processes as messages. The message paths between processes are fixed for the

system. The MBDS processes are created at the start-up time and exist throughout the

entire running time of the system. In addition to two message-passing processes, the

MBDS controller has three main processes, the request prepartion, the insert

information generation, and the post processing. Each MBDS backend also has two

message-passing processes. Further, each backend has three different main processes,

the directory management, the concurrency control, and the record processing. As

research software, MBDS consists of other software for testing and evaluation purposes

[Kova83l. However, the basic system is relatively small, with 3,000 lines of C code for

the controller and 10,000 lines of C code for each backend.

MBDS provides a centralized database where the database is evenly distributed

across the disks of the backends. Only a single copy of the database is stored. The

underlying data model for MBDS is the attribute-based data model. The attribute-

based data model stores data in files of records. MBDS stores records of a file in

clusters. A cluster is a group of records such that every record in the cluster satisfies

the same set of attribute-value pairs or ranges. Thus, a file is divided into one or more

clusters. The distribution of the clusters is accomplished by a cluster-based data

placement algorithm.

The cluster-based data placement is arbitrated by the controller and carried out by

the backends. New clusters are formed by the backends. When a new record is to be

included in its cluster, the controller decides which backend will insert the new record

into the cluster. The record insertion into the cluster is accomplished by the chosen

backend with the placement of the new record on a block of the backend's secondary

storage. Under the direction of the controller, the chosen backend will continue to place

additional new records of the same cluster in the block until the block of the secondary

storage is filled. When this occurs, the backend notifies the controller that the block is

full. The controller then directs another backend to continue the placement of new

records of the same cluster. The controller maintains the identification of the backends -

whose secondary-storage blocks may be used for the insertion of new records into the

existing clusters. In a multiple-backend configuration, the cluster-based data placement

algorithm achieves a cluster-parallel-and-record-serial operation for any subsequent
»

access to the database [Bane78d].

18

A preliminary performance measurement of MBDS has recently been conducted.

The measurement indicated that when experimenting with a system that has up to two

backends, the two performance goals can be nearly met. In other words, the testing

found that when going from one to two backends, where both the size of the database

and the responses of the transaction remained the same, the response time for the same

transactions decreased by an average of forty-seven percent (47%). The testing also

found that when going from one to two backends, where both the size of the database

and the size of the responses were doubled, the response time for the same transactions

stayed basically invariant, with an average increase of only one percent (1%). The

performance measurement studies have been documented in [Teka84] and published in

[Demu85a, Demu85b].

4.2.2. Other Development

The Teradata Corporation began marketing the DBC/1012 in 1984. Users interact

with the system via a program running on a host. Communication between the

controller and its backends is accomplished using a network developed by Teradata

called the Ynet. Essentially, the Ynet is a sorting and merging network, with a

hierarchical structure. The Teradata Corporation indicates that there may be up to 968

backends and controllers on the Ynet. The DBC/1012 also uses a data placement

algorithm to evenly distribute the database across all of the backends. Although

DBC/1012 utilizes a specialized communications network, it is a database system of the

software multiple-backend approach. Both the controller and the backend are

microprocessor-based. The DBC/1012 can be configured with one or more controllers

managing multiple backends. Each backend supports one large-capacity disk drive of the

Winchester type.

Despite the similarity of NPS MBDS and DBC/1012 in their approaches to

database management, there is no testing and measurement data on DBC/1012 to

report herein, since none has been made available. It should be interesting to see how

DBC/1012 measures up to the performance goals of the software multiple-backend

approach; i. e., the multiplicity of backends in DBC/1012 should be related to either the

performance gains or the capacity growth of DBC/1012, as these goals have been

benchmarked on the NPS MBDS.

19

5. CONCLUDING REMARKS - YET ANOTHER NEW DIRECTION

5.1. The Third New Direction

In the first four sections of the paper, two new directions of database-systems

research and development have been articulated, motivated, and outlined. The multi-

lingual database system (MLDS) is mainly characterized by its capability of supporting

many different and well-known data models and executing transactions written in many

different model-based data languages. The multi-backend database system (MBDS) is

chiefly evidenced by its expandability for performance gains and capacity growth.

However, the success of MLDS rests on our ability to provide effective algorithms

for data-model transformations and data-language translations and an efficient database

system to manage and access the transformed databases and to interface and execute

the translated transactions. The emphasis here is that effective mapping algorithms

without an efficient database system will render MLDS impractical. In other words,

even if all of the software language interfaces can be devised and written, so that

MLDS is very multi-lingual, the slowness and inefficiency of the underlying database

system may render the interfaces useless and untimely.

Both the one-to-one and one-to-many mapping approaches are indented for use

with existing, conventional database systems, which are either software single-backend

or mainframe-based. In either case, it is difficult, if not impossible, to significantly

enchance the performance gain and capacity growth of existing, conventional database

systems. On the other hand, the many-to-one mapping approach is not restricted to the

existing, conventional database systems. Instead, it is intended for use with a new,

kernel database system (KDS). If we could build a high-performance and great-capacity

kernel database system, then the problem of performance gains and capacity growth

would not be an issue.

What we advocate for the future database system is to combine the many-to-one

mapping approach of the multi-lingual database system with the multi-backend

database system. The former provides the multiple language interfaces and the latter

provides the kernel database system. In this combination, both the effectiveness and

versatility of the language interfaces of MLDS and the performance gains and capacity

growth of MBDS are realized in a future database system. Consequently, the future

database system will be both multi-lingual and multi-backend, allowing a third direction

20

of database-systems research and development to be realized by the other two new and

seemingly different directions.

5.2. MLDS + MBDS = MHDS

Our current research efforts focus on the third direction, combining the multi-

lingual and multi-backend features into one database systems. (Review Sections 4.1.1

and 4.2.1, respectively.) In our design, we intend to use our MBDS as the kernel

database system in our MLDS. As mentioned in Section 4.1.2, MBDS is also

implemented with the attribute-based data model and data language, which has been

the focus of our experimental efforts in MLDS. Given this compatibility, we simply

point out two advantages offered by this combination.

First, with MBDS as KDS, the addition of new backends with replicated software

to KDS will provide a uniform performance enhancement and capacity growth to the

entire MLDS. Thus, the process of hardware upgrades is made easier and simpler for

our multi-lingual database system.

A second advantage involves the architectural configuration of our MLDS. Such a

configuration is shown in Figure 3. In this environment, the four software components

of a language interface, i. e., LIL, KMS, KC, and KFS, are placed on a host. Each host

Communications
Bus

Communications
Bus

Figure 3. The Multi-Host Database System (MHDS).

- 21 -

may have one or more different language interfaces, e. g., host 1 may have a SQL

language interface, host 2 a DL/I language interface as well as a CODASYL-DML

language interface, host 3 a SQL language interface and a DL/I language interface, and

so on. The distribution of language interfaces on a host-by-host basis allows a large

number of hosts to have their favorite data language interfaces and to share the

common database store and access. In addition, by offloading the language interface to

the hosts and by realizing the kernel database system with a multi-backend database

system, we benefit the overall performance of our MLDS.

This third new direction turns the multi-lingual and multi-backend directions into a

multi-host one. It is our belief that the future database system will be multi-host

database systems (MHDS) with multi-lingual and multi-backend capabilities.

REFERENCES

[Bane77] Banerjee, J. and Hsiao, D. K., "DBC Software Requirements for Supporting
Relational Databases," The Ohio State University, Tech. Rep. No. OSU-CISRC-TR-
77-7, November 1977. This work appeared subsequently in [Bane78c, Bane78d].

[Bane78a] Banerjee, J. and Hsiao, D. K., "A Methodology for Supporting Existing
CODASYL Databases with New Database Machines," Proceedings of National ACM
Conference, 1978.

[Bane78b] Banerjee, J., Buam, R. I. and Hsiao, D. K., "Concepts and Capabilities of a
Database Computer," ACM Transactions on Database Systems, Vol. 4, No. 1, December
1978.

[Bane78c] Banerjee, J. and Hsiao, D. K., "The Use of a Database Machine for
Supporting Relational Databases," Proc. 5th Workshop on Computer Architecture for
Nonnumeric Processing, August 1978.

[Bane78d] Banerjee, J. and Hsiao, D. K., "Performance Study of a Database Machine in
Supporting Relational Databases," Proceedings of the 4th International Conference on
Very Large Data Bases, September 1978.

[Bane80] Banerjee, J., Hsiao, D. K., and Ng, F., "Database Transformation, Query
Translation and Performance Analysis of a Database Computer in Supporting
Hierarchical Database Management," IEEE Transactions on Software Engineering, Vol.
SE-6, No. 1, January 1980.

[Boyn83a] Boyne, R., et al., "A Message-Oriented Implementation of a Multi-Backend
Database System (MBDS)," in Database Machines, Leilich and Missikoff (eds.),
Springer-Verlag, 1983.

- 22 -

[Boyn83b] Boyne, R., et al., "The Implementation of a Multi-Backend Database System
(MBDS): Part III - The Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management," Technical Report, NPS-52-83-003,
Naval Postgraduate School, Monterey, California, March 1983.

[Cham78] Champine, G. A., "Four Approaches to a Data Base Computer," Datamation,
Vol. 24, No. 13, December 1978.

[Cana74] Canaday, R. E., et al., "A Back-end Computer for Data Base Management,"
Communications of the ACM, Vol. 17, No. 10, October 1974.

[Card80] Cardenas, A., and Pirahesh, M. H., "Data Base Communication in a
Heterogeneous Data Base Management System Network," Information Systems, Vol. 5,
No. 1, 1980.

[Demu84] Demurjian, S. A., et al., "The Implementation of a Multi-Backend Database
System (MBDS): Part IV - The Revised Concurrency Control and Directory
Management Processes and the Revised Definitions of Inter-Process and Inter-Computer
Messages" Technical Report, NPS-52-84-005, Naval Postgraduate School, Monterey,
California, March 1984.

[Demu85a] Demurjian, S. A., et al., "Performance Evaluation of a Database System in
Multiple Backend Configurations," Proceedings of the 1985 International Workshop on
Database Machines, March 1985.

[Demu85b] Demurjian, S. A. and Hsiao, D. K., "Benchmarking Database Systems in
Multiple Backend Configurations," IEEE Database Engineering Bulletin, March 1985.

[Glig84] Gligor, V. D., and Luckenbaugh, G. L., "Interconnecting Heterogeneous
Database Management Systems," IEEE COMPUTER, Vol. 17, No. 1, January 1984.

[He82] He, X., et al., "The Implementation of a Multi-Backend Database System
(MBDS): Part II - The First Prototype MBDS and the Software Engineering
Experience," Technical Report, NPS-52-82-008, Naval Postgraduate School, Monterey,
California, July 1982; also appeared in Advanced Database Machine Architecture, Hsiao
(ed.), Prentice Hall, 1983.

[Hsia70] Hsiao, D. K., and Harary, F., "A Formal System for Information Retrieval
from Files," Communications of the ACM, Vol. 13, No. 2, February 1970; Corrigenda,
Vol 13., No. 4, April 1970.

[Hsia80] Hsiao, D. K., "Data Base Computers," in Advances in Computers, Yovits
(ed.), Vol. 19, Academic Press, 1980.

[Hsia81a] Hsiao, D. K. and Menon, M.J., "Design and Analysis of a Multi-
Backend Database System for Performance Improvement, Functionality Expansion and
Capacity Growth (Part I)," Technical Report, OSU-CISRC-TR-81-7, The Ohio State

23

University, Columbus, Ohio, July 1981.

[Hsia81b] Hsiao, D. K. and Menon, M.J., "Design and Analysis of a Multi-
Backend Database System for performance Improvement, Functionality Expansion and
Capacity Growth (Part II)," Technical Report, OSU-CISRC-TR-81-8, The Ohio State
University, Columbus, Ohio, August 1981.

[Hsia83] Hsiao, D. K., (ed.), Advanced Database Machine Architectures, Prentice-Hall,
1983.

[Katz82] Katz, R. H., and Wong, E., "Decompiling CODASYL DML into Relational
Queries," ACM Transactions on Database Systems, Vol. 7, No. 1, March 1982.

[Kerr82] Kerr, D.S., et al., "The Implementation of a Multi-Backend Database System
(MBDS): Parti- Software Engineering Strategies and Efforts Towards a Prototype
MBDS," Technical Report, OSU-CISRC-TR-82-1, The Ohio State University,
Columbus, Ohio, January 1982; also appeared in Advanced Database Machine
Architecture, Hsiao (ed.), Prentice Hall, 1983.

[Kimb8l] Kimbleton, S. R., and Wang, P., "Application and Protocols," in Distributed
Systems: Architecture and Implementation, Lecture Notes in Computer Science, Paul
Lampson and Siegert, eds., Vol. 105, Springer Verlag, New York, 1981.

[Kova83] Kovalchik, J. G., "Performance Evaluation Tools for a Multi-Backend
Database System," Master's Thesis, Naval Postgraduate School, Monterey, California,
December 1983

[Lars83] Larson, J. A., "Bridging the Gap Between Network and Relational Database
Management Systems," IEEE COMPUTER, Vol. 16, No. 9, September 1983.

[Macy84] Macy, G., "Design and Analysis of an SQL Interface for a Multi-Backend
Database System," Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1984.

[Roll84] Rollins, R., "Design and Analysis of a Complete Relational Interface for a
Multi-Backend Database System," Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

[Rose82] Rosenberg, R. L., and Landers, T., "An Overview of MULTIBASE,"
Distributed Data Bases, H.-J. Schneider, ed., North-Holland Publishing Company, 1982.

[Roth74] Rothnie, J. B. Jr., "Attribute Based File Organization in a Paged Memory
Environment," Communications of the ACM, Vol. 17, No. 2, February 1974.

[Teka84] Tekampe, R. C, and Watson, R. J., "Internal and External Performance
Measurement Methodologies for Database Systems," Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1984.

24

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration 1
Code 012A
Naval Postaraduate School
Monterey, CA 93943

Chairman, Code 52M1 20
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

David K. Hsiao 150
Professor
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

[Weis84] Weishar, D., "Design and Analysis of a Complete Hierarchical Interface for a
Multi-Backend Database System," Master's Thesis, Naval Postgraduate School,
Monterey, California, June 1984.

[Wong7l] Wong, E., and Chiang, T. C, "Canonical Structure in Attribute Based File
Organization," Communications of the ACM, Vol. 14, No. 9, September 1971.

25 -

